全球变暖情况下 区域性气候的变化模式
Climate models project that the global average temperature will rise about 1°C by the middle of the century, if we continue with business as usual and emit greenhouse gases(温室气体) as we have been. The global average, though, does not tell us anything about what will happen to regional climates, for example rainfall in the western United States or in paradisical(愉悦的) islands like Hawai'i. Analyzing global model warming projections in models used by the Intergovernmental(政府间的) Panel on Climate Change, a team of scientists headed by meteorologist(气象学者) Shang-Ping Xie at the University of Hawaii at Mānoa's International Pacific Research Center, finds that ocean temperature patterns in the tropics and subtropics(亚热带) will change in ways that will lead to significant changes in rainfall patterns. The study will be published in the Journal of Climate this month, breaking ground on such regional climate forecasts. Scientists have mostly assumed that the surfaces of Earth's oceans will warm rather evenly in the tropics. This assumption has led to "wetter-gets-wetter" and "drier-gets-drier" regional rainfall projections. Xie's team has gathered evidence that, although ocean surface temperatures can be expected to increase mostly everywhere by the middle of the century, the increase may differ by up to 1.5°C depending upon the region. "Compared to the mean projected rise of 1°C, such differences are fairly large and can have a pronounced(断然的,显著的) impact on tropical and subtropical climate by altering atmospheric heating patterns and therefore rainfall," explains Xie. "Our results broadly indicate that regions of peak sea surface temperature will get wetter, and those relatively cool will get drier." Two patterns stand out. First, the maximum temperature rise in the Pacific is along a broad band at the equator(赤道) . Already today the equatorial Pacific sets the rhythm of a global climate oscillation(摆动,振动) as shown by the world-wide impact of El Niño(厄尔尼诺现象) . This broad band of peak temperature on the equator changes the atmospheric heating in the models. By anchoring a rainband(雨带) similar to that during an El Nino, it influences climate around the world through atmospheric teleconnections(远程并置对比) . A second ocean warming pattern with major impact on rainfall noted by Xie and his colleagues occurs in the Indian Ocean and would affect the lives of billions of people. Overlayed on Indian Ocean warming for part of the year is what scientists call the Indian Ocean Dipole that occasionally occurs today once every decade or so. Thus, the models show that warming in the western Indian Ocean is amplified(放大,详述) , reaching 1.5°C, while the eastern Indian Ocean it is dampened(抑制,沮丧) to around 0.5°C. "Should this pattern come about," Xie predicts, "it can be expected to dramatically shift rainfall over eastern Africa, India, and Southeast Asia. Droughts(干旱) could then beset(困扰,围绕) Indonesia and Australia, whereas regions of India and regions of Africa bordering the Arabian Sea could get more rain than today." Patterns of sea surface temperature warming and precipitation(坠落,沉淀) change in 2050 as compared with 2000. Annual mean precipitation change is shown in green/gray shade and white contours(等高线,轮廓) in mm/month. Precipitation tends to increase over regions with ocean warming above the tropical mean (contours of warm colors in oC), and to decrease where ocean warming is below the tropical mean (contours of cool colors). |