当前位置

: 英语巴士网英语阅读英语科普英语阅读内容详情

加拿大北极高纬度地区发现巨骆驼骨化石

13

A research team led by the Canadian Museum of Nature has identified the first evidence for an extinct giant camel in Canada's High Arctic. The discovery is based on 30 fossil fragments of a leg bone found on Ellesmere Island, Nunavut and represents the most northerly record for early camels, whose ancestors are known to have originated in North America some 45 million years ago. The fossils were collected over three summer field seasons (2006, 2008 and 2010) and are about three-and-a-half million years old, dating from the mid-Pliocene Epoch. Other fossil finds at the site suggest this High Arctic camel lived in a boreal-type forest environment, during a global warm phase on the planet.

The research by Dr. Natalia Rybczynski and co-authors including Dr. John Gosse at Dalhousie University, Halifax and Dr. Mike Buckley at the University of Manchester, England is described in the March 5, 2013 edition of the online journal Nature Communications.

"This is an important discovery because it provides the first evidence of camels living in the High Arctic region," explains Rybczynski, a vertebrate paleontologist(古生物学者) with the Canadian Museum of Nature, who has led numerous field expeditions in Canada's Arctic. "It extends the previous range of camels in North America northward by about 1,200 km, and suggests that the lineage that gave rise to modern camels may been originally adapted to living in an Arctic forest environment."

The camel bones were collected from a steep slope at the Fyles Leaf Bed site, a sandy deposit near Strathcona Fiord on Ellesmere Island. Fossils of leaves, wood and other plant material have been found at this site, but the camel is the first mammal recovered. A nearby fossil-rich locality at Strathcona Fiord, known as the Beaver Pond site, has previously yielded fossils of other mammals from the same time period, including a badger(獾), deerlet(小路), beaver(海狸) and three-toed horse.

Determining that the bones were from a camel was a challenge. "The first time I picked up a piece, I thought that it might be wood. It was only back at the field camp that I was able to ascertain it was not only bone, but also from a fossil mammal larger than anything we had seen so far from the deposits," explains Rybczynski, relating the moment that she and her team had discovered something unusual.

Some important physical characteristics suggested the fossil fragments were part of a large tibia, the main lower-leg bone in mammals, and that they belonged to the group of cloven-hoofed animals known as arteriodactyls, which includes cows, pigs and camels. Digital files of each of the 30 bone fragments were produced using a 3D laser scanner, allowing for the pieces to be assembled and aligned. The size of the reconstituted leg bone suggested it was from a very large mammal. At the time in North America, the largest arteriodactyls were camels.

Full confirmation that the bones belonged to a camel came from a new technique called "collagen fingerprinting" pioneered by Dr. Mike Buckley at the University of Manchester in England. Profiles produced by this technique can be used to distinguish between groups of mammals.

Minute amounts of collagen, the dominant protein found in bone, were extracted from the fossils. Using chemical markers for the peptides that make up the collagen, a collagen profile for the fossil bones was developed. This profile was compared with those of 37 modern mammal species, as well as that of a fossil camel found in the Yukon, which is also in the Canadian Museum of Nature's collections.

The collagen profile for the High Arctic camel most closely matched those of modern camels, specifically dromedaries (camels with one hump) as well as the Yukon giant camel, which is thought to be Paracamelus, the ancestor of modern camels. The collagen information, combined with the anatomical data, allowed Rybczynski and her colleagues to conclude that the Ellesmere bones belong to a camel, and is likely the same lineage as Paracamelus.

英语科普推荐